
Pizco Documentation
Release 0.1

Hernan E. Grecco

Nov 02, 2017

Contents

1 Design principles 3

2 Pizco in action 5

3 Contents 7
3.1 Getting Started . 7
3.2 Futures . 9
3.3 Signals and Slots (registering callbacks) . 9
3.4 Serve in process . 10
3.5 Command line tool . 10
3.6 Internals . 11
3.7 API . 12

4 Indices and tables 13

Python Module Index 15

i

ii

Pizco Documentation, Release 0.1

Pizco is Python module/package that allows python objects to communicate. Objects can be exposed to other process
in the same computer or over the network, allowing clear separation of concerns, resources and permissions.

Pizco supports calling methods from remote objects and also accessing their attributes, dictionary attributes and prop-
erties. Most importantly, using a Qt-like (and Qt compatible!) signal and slot mechanism you can easily register
notifications.

As ZMQ is used as the transport layer, communication is fast and efficient, and different protocols are supported. It
has a complete test coverage. It runs in Python 3.2+ and requires PyZMQ. It is licensed under BSD.

Contents 1

https://github.com/zeromq/pyzmq

Pizco Documentation, Release 0.1

2 Contents

CHAPTER 1

Design principles

• Reusable Agent class as communicating object for both Proxy and Server.

• ZMQ REP/REQ to handle sync access to objects.

• ZMQ PUB/SUB for notifications and async operations.

• PyQt-like signal and slots callbacks, compatible with PyQt.

• Transparent handling of methods that return concurrent.Futures.

• Soon: Asynchronous and batched operation on remote objects.

• Small codebase: small and easy to maintain codebase with a flat hierarchy. It is a single stand-alone module that
can be installed as a package or added side by side to your project.

• Soon: Python 2 and 3: A single codebase that runs unchanged in Python 2.6+ and Python 3.0+.

3

Pizco Documentation, Release 0.1

4 Chapter 1. Design principles

CHAPTER 2

Pizco in action

example.py:

from PyQt4 import pyqtSignal as Signal

class MultiplyBy(object):

factor_changed = Signal()

def __init__(self, factor):
self._factor = factor

def calculate(self, x):
return x * self.factor

@property
def factor(self):

return self._factor

@factor.setter
def factor(self, value):

if self._factor == value:
continue

self.factor_changed.emit(value, self._factor)
self._factor = value

server.py:

from example import MultiplyBy

from pizco import Server

server = Server(MultiplyBy(2), 'tcp://127.0.0.1:8000')
server.serve_forever()

client.py:

5

Pizco Documentation, Release 0.1

import time

from pizco import Proxy

proxy = Proxy('tcp://127.0.0.1:8000')

print('{} * {} = {}'.format(proxy.factor, 8, proxy.calculate(8)))

def on_factor_changed(new_value, old_value):
print('The factor was changed from {} to {}'.format(old_value, new_value))
print('{} * {} = {}'.format(proxy.factor, 8, proxy.calculate(8)))

proxy.factor_changed.connect(on_factor_changed)

for n in (3, 4, 5):
proxy.factor = n
time.sleep(.5)

Start the server in a terminal and run the client in another one:

$ python client.py
2 * 8 = 16
The factor was changed from 2 to 3
3 * 8 = 24
The factor was changed from 3 to 4
4 * 8 = 32
The factor was changed from 4 to 5
5 * 8 = 40

6 Chapter 2. Pizco in action

CHAPTER 3

Contents

3.1 Getting Started

3.1.1 Installing

To install Pizco you need to to install PyZMQ following the instructions here. If you are having trouble at this step, a
few Python distributions like EPD and Anaconda have PyZMQ preinstalled.

Then install, Pizco using pip or easy_install:

$ easy_install pizco

or:

$ pip install pizco

3.1.2 Basic usage

Consider the:

from myproject import Robot

robot = Robot()

print(robot.name)
robot.move_arm()
robot.age = 28

Pizco provides two classes t:

• Server: wraps an object and exposes its attributes via a ZMQ socket.

• Proxy: connects to a server, redirects attribute request to it, and collect the response.

7

https://github.com/zeromq/pyzmq
http://www.zeromq.org/bindings:python
http://www.enthought.com/products/epd_free.php
https://store.continuum.io/cshop/anaconda
https://github.com/zeromq/pyzmq
http://pypi.python.org/pypi/pip
http://pypi.python.org/pypi/setuptools

Pizco Documentation, Release 0.1

Creating a Server is quite simple, just instantiate a Server using the object as the first parameter:

This is your stuff
from myproject import Robot

from pizco import Server

server = Server(Robot())

If no endpoint is given, the server will bind to a random tcp port.

You can specify the endpoint with the second argument:

server = Server(Robot(), 'tcp://127.0.0.1:8000')

Any valid ZMQ endpoints is valid:

• inproc: local in-process (inter-thread) communication transport

example: inproc://robbie-the-robot

• ipc: local inter-process communication transport

example: ipc://robbie-the-robot

• tcp: unicast transport using TCP

example: tcp://127.0.0.1:8000

In the client side, you need to create a proxy:

from pizco import Proxy

robot = Proxy('tcp://127.0.0.1:8000')

and now you can use the proxy as if it was the actual object:

print(robot.name)
robot.move_arm()
robot.age = 28

Notice that the only needed change was to the initialization code.

3.1.3 Remote exceptions

Exception in the served object are caught remotely and re-raised by the proxy and therefore the following code:

try:
robot.age = input()

except ValueError as ex:
print('That is not a valid age for the robot')

will work the same way if the robot is the actual object or just a Proxy to it.

Note: The remote traceback is not propagated the proxy in the current version of Pizco.

8 Chapter 3. Contents

http://api.zeromq.org/2-1:zmq-bind
tcp://127.0.0.1:8000

Pizco Documentation, Release 0.1

3.2 Futures

Starting from Python 3.2, concurrent.futures provides a high-level interface for asynchronously executing
callables (for older versions there is a Futures Backport)

The concurrent.futures.Future class encapsulates the asynchronous execution of a callable and Pizco has
in-built support for it. Instead of returning a Future, the Server will store it and notify the Proxy. The proxy then
returns a client-side Future connected to the original server-side Future. The usage is just like normal Futures (there
are just that after all!):

from myproject import Robot

from pizco import Proxy

robot = Proxy('tcp://127.0.0.1:8000')

Move is a method from robot that returns a Future
fut = robot.think('What do you get if you multiply six by nine?')

Do something here

fut is an instance of `Future`, therefore you can use the
methods and properties described in the Python docs
answer = fut.result()

Note: Future.cancel() is not currently implemented.

3.3 Signals and Slots (registering callbacks)

If a served object exposes a Qt signal (or Qt-like signals), you can connect a slot to it in the proxy. If you are not
familiar with the Qt jargon, this is equivalent to bind (connect) a callback (slot) to an event (signal).

The syntax in the client side is exactly as it is done in PyQt/PySide New Style Signals and Slots:

def print_notification(new_position):
print('The arm has been moved to {}'.format(new_position))

proxy = Proxy('tcp://127.0.0.1:8000')

proxy.arm_moved.connect(print_notification)

Under the hood, the proxy is subscribing to an event in the server using a ZMQ SUB socket. When the arm_moved
signal is emitted server-side, the server will asynchronously notify the proxy using a PUB socket. The proxy will call
print_notification when it receives message. So you have client side notification of server side events.

It is important to note that if you are using PyQt/PySide signals in your code, no modification is needed to use Pizco.
But not only PyQt/PySide signals work. An attribute is considered Signal if it exposes at least three methods: connect,
disconnect and emit.

Just like PyQt, multiple slots can be connected to the same signal:

proxy.arm_moved.connect(print_notification)
proxy.arm_moved.connect(mail_notification)

3.2. Futures 9

https://docs.python.org/3/library/concurrent.futures.html#module-concurrent.futures
http://pypi.python.org/pypi/futures
https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.Future
http://www.riverbankcomputing.com/software/pyqt/intro
http://qt-project.org/wiki/PySide
http://www.riverbankcomputing.com/static/Docs/PyQt4/html/new_style_signals_slots.html

Pizco Documentation, Release 0.1

and they will be called in the order that they were added.

To disconnect from a signal:

proxy.arm_moved.disconnect(mail_notification)

Additionally, you can connect in another proxy:

proxy2 = Proxy('tcp://127.0.0.1:8000')

proxy2.arm_moved.connect(mail_notification)

Proxy connections to signals are independent and therefore disconnecting in one proxy will not have an effect on
another.

3.4 Serve in process

You can directly start the server from the client application:

from pizco import Server

from myproject import Robot

The class (not the object!) is given as the first argument
and it returns a proxy to the served object.
robot_proxy = Server.serve_in_process(Robot)

robot_proxy.move_arm()

print(robot_proxy.age)

The server is started in a new instance of the same python interpreter. Pizco will provide this new process with the
path of the Robot class but you need to be sure that any other dependency is available.

If the Robot constructor takes some arguments you can give them like this:

robot_proxy = Server.serve_in_process(Robot,
args=('Robbie',),
kwargs={'age': 3})

Finally, you can ask Pizco to show the running server with a pop-up window:

robot_proxy = Server.serve_in_process(Robot,
args=('Robbie',),
kwargs={'age': 3},
gui=True)

3.5 Command line tool

You can start a server from the command line calling pizco.py. For example:

$ python pizco.py tcp://127.0.0.1:8000
Server started at tcp://127.0.0.1:8000
Press CTRL+c to stop ...

10 Chapter 3. Contents

Pizco Documentation, Release 0.1

will start a server bound to localhost, port 8000. If you want to bind to a particular pub endpoint, you can specify it
with an extra parameter.

When the server is created in this way, no object is served. To instantiate and serve an object, create a proxy, connect
to it and call the instantiate method:

from myproject import Robot

proxy = Proxy('tcp://127.0.0.1:8000')
proxy._proxy_agent.instantiate(Robot,

args=('Robbie',),
kwargs={'age': 3})

Additional arguments can be used to configure the server:

-g: open a small window to display the server status. If the window is closed, the server is stopped.

-v: print debug information to the console.

-p path: add path to sys.path

This is script is called under the hood by serve_in_process to initiated a server in detached processes.

3.6 Internals

3.6.1 Agent

The base of both Proxy and Server is the Agent. Each Agent has ZMQ sockets to communicate:

• a REP socket to receive requests. This is the main endpoint of the Agent.

• a PUB to emit notifications to other Agents.

• one SUB to subscribe to notifications from other Agents.

• one REQ per each Agent that it has to talk to (stored in self.connections)

The REP and PUB endpoint can be specified when the Agent is instantiated. If no endpoint is given, the sockets will
bind to a random tcp port.

3.6.2 Protocol

Messages are multipart ZMQ messages. The conten

FRAME 0: Header (utf-8 encoded str)

Used for identification and filtering. It contains 3 string concatenated with a + (plus sign).

1. The protocol version (currently PZC00).

2. A unique identifier for the sender.

3. A string specifying the topic of the message.

example: PZC00+urn:uuid:ad2d9eb0-c5f8-4bfb-a37d-6b7903b041f3+value_changed

FRAME 1: Serialization (utf-8 encoded str)

Indicates the serialization protocol used in FRAME 2. Current valid values are:

• ‘pickle’: use the highest version available of the pickle format (default).

3.6. Internals 11

Pizco Documentation, Release 0.1

• ‘pickleN’: use the N version of the pickle format.

• ‘json’: use json format.

FRAME 2: Content (binary blob)

The actual content of the message.

FRAME 3: Message ID (utf-8 encoded str)

A unique identifier for the message.

example: urn:uuid:b711f2b8-277d-40df-a283-6269331db251

FRAME 4: Signature (bytes)

HMAC sha1 signature of FRAME 0:4 concatenated with Agent.hmac_key

By default, Agents use an empty signature key (no signature) and the pickle serializer. The simplest way to change
these defaults is by using the environmental variables PZC_KEY and PZC_SER. You might want to change the serial-
izer when running different agents on different versions of Python as not all pickle versions are supported in all python
versions.

You can also change the protocol settings for an specific Agent by passing a Protocol object when the Agent is created.

3.6.3 Proxy-Server Protocol

Between the Proxy and the Server, the content of the message (Frame 2) is a tuple of three elements, being the first
utf-8 str defining the subprotocol (‘PSMessage’). The second and third elements specify the action and the options for
that action.

3.7 API

12 Chapter 3. Contents

urn:uuid:b711f2b8-277d-40df-a283-6269331db251

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

13

Pizco Documentation, Release 0.1

14 Chapter 4. Indices and tables

Python Module Index

p
pizco, 11

15

Pizco Documentation, Release 0.1

16 Python Module Index

Index

P
pizco (module), 11, 12

17

	Design principles
	Pizco in action
	Contents
	Getting Started
	Futures
	Signals and Slots (registering callbacks)
	Serve in process
	Command line tool
	Internals
	API

	Indices and tables
	Python Module Index

